THE FEASIBILITY STUDY OF USING EXTERNAL ELECTRIC FIELD TO REDUCE THE LIGHTNING HAZARDS

Chao Zhang Dept. of Civil & Environ. Eng. Michigan Technological University

- 1.Introduction
- 2.Project objectives
- 3.Governing equations
- 4. Physical relationships
- 5.Simulation model
- 6.Simulation results
- 7.Summary and Conclusions

• 1.Introduction

- 2.Project objectives
- 3.Governing equations
- 4.Physical relationships
- 5.Simulation model
- 6.Simulation results
- 7.Summary and Conclusions

1. Introduction

Dangerous!! May cause casualties and economic loss!!

1. Introduction

Does it work effectively?

The surrounding soils should have high electric conductivity.

High moisture content!

1. Introduction

Four main gradients driving water flows.

- 1. Height gradient;
- 2. Electric gradient;
- 3. Chemical gradient;
- 4. Thermal gradient.

If we put an anode around the ground rod, will it help to maintain high moisture content?

• 1.Introduction

- 2.Project objectives
- 3.Governing equations
- 4.Physical relationships
- 5.Simulation model
- 6.Simulation results
- 7.Summary and Conclusions

2. Project objectives

Is it feasible to drive water flow by putting an anode?

How efficiently does it help to hold water?

- 1.Introduction
- 2.Project objectives
- 3.Governing equations
- 4.Physical relationships
- 5.Simulation model
- 6.Simulation results
- 7.Summary and Conclusions

3. Governing equations

The coupled electro-saturated-unsaturated water flow:

$$S_r \frac{d(H+z)}{dt} = div[K_h \nabla (H+z) + K_{eo} \nabla V]$$

Electric potential:

$$div(K_{eo}\nabla V) + \phi = 0$$

- 1.Introduction
- 2.Project objectives
- 3.Governing equations
- 4. Physical relationships
- 5.Simulation model
- 6.Simulation results
- 7.Summary and Conclusions

4. Physical relationships

Electric conductivity of soils:

$$\sigma_e = K \sigma_w S_r^a n^b$$

Hydraulic conductivity of soils:

A function of degree of saturation

$$\sigma_{e} = S_{e}^{0.5} \left[1 - \left(1 - S_{e}^{1/m} \right)^{m} \right]^{2}$$

- 1.Introduction
- 2.Project objectives
- 3.Governing equations
- 4.Physical relationships
- 5.Simulation model
- 6.Simulation results
- 7.Summary and Conclusions

5. Simulation model

- 1.Introduction
- 2.Project objectives
- 3.Governing equations
- 4.Physical relationships
- 5.Simulation model
- 6.Simulation results
- 7.Summary and Conclusions

6. Simulation results

final project: Cycle=31170 Time= 2.7788 dt= 7.5668e-5 p2 Nodes=1695 Cells=999 RMS Err= 3.e-4 Integral= 734.7646

6. Simulation results

final project: Cycle=31170 Time= 2.7788 dt= 7.5668e-5 p2 Nodes=1695 Cells=999 RMS Err= 3.e-4 Integral= 375.6508

6. Simulation results

final project: Cycle=31170 Time= 2.7788 dt= 7.5668e-5 p2 Nodes=1695 Cells=999 RMS Err= 3.e-4

6. Summary and conclusions

- External anode has the potential to help hold water.
- The coupled electro-saturated-unsaturated water flow could be easily decoupled by defining a state variable as degree of saturation.
- In this preliminary study, many empirical equations is used which needs careful treatment.

•Questions?

